翻訳と辞書 |
Raikov's theorem : ウィキペディア英語版 | Raikov's theorem In probability theory, Raikov’s theorem, named after Dmitry Raikov, states that if the sum of two independent non-negative random variables ''X'' and ''Y'' has a Poisson distribution, then both ''X'' and ''Y'' themselves must have the Poisson distribution.〔Johnson, N.L., Kotz, S., Kemp, A.W. (1993) ''Univariate Discrete Distributions'', Wiley. p. 173 ISBN 0-471-54897-9〕〔Galambos, Janos (2006) ''Raikov's theorem'', in Encyclopedia of Statistical Sciences, Wiley. 〕 It says the same thing about the Poisson distribution that Cramér's theorem says about the normal distribution. It can readily be shown by mathematical induction that the same is true of the sum of more than two independent random variables. == Notes and references ==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Raikov's theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|